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Abstract. Estimating the abundances of all k-mers in as e t of biological sequences is a
fundamental and challenging problem with many applications in biological analysis. Although
several methods have been designed for the exact or approximate solution of this problem, they
all require to process the entire data set, which can be extremely expensive for high-throughput
sequencing data sets. Although in some applications it is crucial to estimate all k-mers and
their abundances, in other situations it may be sufficient to report only frequent k-mers, which
appear with relatively high frequency in a data set. This is the case, for example, in the com-
putation of k-mers’ abundance-based distances among data sets of reads, commonly used in
metagenomic analyses. In this study, we develop, analyze, and test a sampling-based approach,
called Sampling Algorithm for K-mErs approxIMAtion (SAKEIMA), to approximate the fre-
quent k-mers and their frequencies in a high-throughput sequencing data set while providing
rigorous guarantees on the quality of the approximation. SAKEIMA employs an advanced sam-
pling scheme and we show how the characterization of the Vapnik-Chervonenkis dimension,
a core concept from statistical learning theory, of a properly defined set of functions leads to
practical bounds on the sample size required for a rigorous approximation. Our experimental
evaluation shows that SAKEIMA allows to rigorously approximate frequent k-mers by pro-
cessing only a fraction of a data set and that between high-throughput sequencing data sets.
Overall, SAKEIMA is an efficient and rigorous tool to estimate k-mers’ abundances providing
significant speedups in the analysis of large sequencing data sets.
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1 Introduction

The analysis of substrings of length k, called k-mers, is ubiquitous in biological sequence analysis
and is among the first steps of processing pipelines for a wide spectrum of applications, including: de
novo assembly [Pevzner et al., 2001; Zerbino and Birney, 2008], error correction [Kelley et al., 2010;
Salmela et al., 2016], repeat detection [Li and Waterman, 2003], genome comparison [Sims et al.,
2009], digital normalization [Brown et al., 2012], RNA-seq quantification [Patro et al., 2014; Zhang
and Wang, 2014], metagenomic reads classification [Wood and Salzberg, 2014] and binning [Girotto
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et al., 2016], fast search-by-sequence over large high-throughput sequencing repositories [Solomon
and Kingsford, 2016]. A fundamental task in k-mer analysis is to compute the frequency of all k-mers,
with the goal to distinguish frequent k-mers from infrequent k-mers [Marçais and Kingsford, 2011;
Melsted and Pritchard, 2011]. For example, this task is relevant in the analysis of high-throughput
sequencing data, since infrequent k-mers are often assumed to result from sequencing errors. For
several applications, the computation of k-mers frequencies is among the most computationally
demanding steps of the analysis.

Many algorithms have been proposed for computing the exact frequency of all k-mers, such
as Tallymer [Kurtz et al., 2008], Jellyfish [Marçais and Kingsford, 2011], BFCounter [Melsted and
Pritchard, 2011], DSK [Rizk et al., 2013], KAnalyze [Audano and Vannberg, 2014], Turtle [Roy et al.,
2014], KMC 3 [Kokot et al., 2017], and Squeakr-exact [Pandey et al., 2017]. These methods typically
perform a linear scan of the sequences to analyze, and use a combination of parallelism and efficient
data structures (such as Bloom filters and Hash tables) to maintain membership and counting infor-
mation associated to all k-mers. Since the computation of exact k-mer frequencies is computationally
demanding, in particular for large sequence analysis or for high-throughput sequence datasets, recent
methods have focused on providing approximate solution to the problem, improving the time and
memory requirements. KmerStream [Melsted and Halldórsson, 2014], Kmerlight [Sivadasan et al.,
2016] and ntCard [Mohamadi et al., 2017] proposed streaming approaches for the approximation of
the k-mer frequencies histogram. KmerGenie [Chikhi and Medvedev, 2013] performs a linear scan
of the input, counting a random subset (chosen before processing the dataset) of all possible k-mers
to approximate the abundance histogram, providing an exploratory tool to choose the value of k.
khmer [Zhang et al., 2014] and the recently proposed Squeakr [Pandey et al., 2017] rely on proba-
bilistic data structures to approximate the counts of individual k-mers. With the only exception of
KmerGenie, all these methods processes all the k-mer occurrences in the input dataset; in addition,
all the aforementioned approximate methods that report the counts of individual k-mers do not
provide simultaneous estimates with rigorous guarantees for all the counts k-mers that are provided
in output.

All the methods cited above try to estimate the frequency of all k-mers or of all k-mers that
appear at least few times (e.g., twice) in the dataset. While this is crucial in some applications (e.g., in
genome assembly k-mers that occur exactly once often represents sequencing errors and it is therefore
important to estimate the count of all observed k-mers), in other applications this is less justified. For
example, in the comparison of high-throughput sequencing metagenomic datasets, abundance-based
distances or dissimilarities (e.g., the Bray-Curtis dissimilarity) between k-mer counts of two datasets
are often used [Benoit et al., 2016; Danovaro et al., 2017; Dickson et al., 2017] to assess the distance
between the corresponding datasets. In contrast to presence-based distances [Ondov et al., 2016]
(e.g., Jaccard distance), abundance-based distances take into account the frequency of each k-mer,
with frequent k-mers contributing more to the distance than k-mers that appear with low frequency,
but still more than a handful of times, in the dataset. Thus, two natural questions are (i) whether the
results obtained considering all k-mers can be estimated by considering the abundances of frequent
k-mers only, and (ii) whether the abundances of frequent k-mers can be computed more efficiently
than the counts of all k-mers. Recently, preliminary work [Hrytsenko et al., 2018] has shown that,
for the cosine distance and k = 12, the answer to the first question is positive, and in Section 4 we
show that this indeed the case for larger values of k and other abundance-based distances as well
as presence-based distances (e.g., the Jaccard distance). To the best of our knowledge, the second
question is hitherto unexplored. In addition, considering only frequent k-mers allows to focus on
the most reliable information in a metagenomic dataset, since a high stochastic variability in low
frequency k-mers is to be expected due to the sampling process inherent in sequencing.

A natural approach to reduce time and memory requirements for frequency estimation problems
is to process only a portion of the data, for example by sampling some parts of a dataset. Sampling
approaches are appealing because infrequent k-mers naturally tend to appear with lower probability
in a sample, allowing to directly focus on frequent k-mers in subsequent steps. However, major



Title Suppressed Due to Excessive Length 3

challenges in sampling approaches are (i) to provide rigorous guarantees relating the results obtained
by processing the sample and the results that would be obtained from the whole dataset, and
(ii) to provide effective bounds on the size of the sample required to achieve such guarantees. The
application of sampling to k-mers is even more challenging than in other scenarios since, for values
of k in the typical range of interest to applications (e.g., 20-60), even the most frequent k-mers have
relatively low frequency in the data. To the best of our knowledge, no approach based on sampling a
portion of the input dataset has been proposed to approximate frequent k-mers and their frequencies
while providing rigorous guarantees.

Fig. 1: SAKEIMA computes a fast and rigorous approximation of the frequent k-mers in a high-
throughput sequencing dataset by sampling a fraction of all k-mer occurrences in a dataset, providing
a significant speed-up for the computation of k-mer’s abundance-based distances between datasets
of reads (e.g., in metagenomics).

Our Contribution. We study the problem of approximating frequent k-mers, i.e., k-mers that
appear with frequency above a user-defined threshold θ in a high-throughput sequencing dataset. In
these regards, our contributions are fourfold. First, we define a rigorous definition of approximation,
governed by an accuracy parameter ε. Second, we propose a new method, Sampling Algorithm for
K-mErs approxIMAtion (SAKEIMA), to obtain an approximation to the set of frequent k-mers using
sampling. SAKEIMA (see Fig.1) is based on a sampling scheme that goes beyond näıve sampling of
k-mers and allows to estimate k-mers of relatively low frequency considering only a fraction of all
k-mers occurrences in the dataset. Third, we provide analytical bounds to the sample size needed
to obtain rigorous guarantees on the accuracy of the estimated k-mer frequencies, with respect to
the ones measured on the entire dataset. Our bounds are based on the notion of VC dimension,
a fundamental concept from statistical learning theory, which has been used to design efficient
algorithms to identify frequent patterns in other scenarios [Riondato and Upfal, 2014; Riondato
and Kornaropoulos, 2016; Servan-Schreiber et al., 2018]. To our knowledge, ours is the first method
that applies concepts from statistical learning to provide a rigorous approximation of the k-mers
frequencies. Fourth, we use SAKEIMA to extract frequent k-mers from metagenomic datasets from
the Human Microbiome Project (HMP) and to approximate abundance-based and presence-based
distances among such datasets, showing that SAKEIMA allows to accurately estimate such distances
by analyzing only a fraction of the entire dataset, resulting in a significant speed-up.

Our approach is orthogonal to previous work: any exact or approximate algorithm can be applied
to the sample extracted by SAKEIMA, that can therefore be used before applying previously proposed
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methods, thus reducing their computational requirements while providing rigorous guarantees on
the results w.r.t. to the entire dataset. While we present our methodology in the case of finding
frequent k-mers from a set of sequences representing a high-throughput sequencing dataset of short
reads, our results can be applied to datasets of long reads and to whole-genome sequences as well.

2 Preliminaries

Let a dataset D be a bag of n reads D = {r0, . . . , rn−1}, where each read ri, 0 ≤ i ≤ n−1, is a string
of length ni from an alphabet Σ of cardinality |Σ| = σ. For j ∈ {0, . . . , ni − 1}, let ri[j] be the j-th
character of ri. For a given integer k ≤ mini{ni : ri ∈ D}, we define a k-mer A as a string of length
k from Σ, that is A ∈ Σk. We say that a k-mer A appears in ri at position j ∈ {0, . . . , ni − k} if
ri[j+h] = A[h],∀h ∈ {0, . . . , k−1}. For every i, 0 ≤ i ≤ n−1, and every j ∈ {0, . . . , ni−k}, we define
the indicator function ϕri,A(j) that is 1 if the k-mer A appears in ri at position j, while ϕri,A(j) = 0

otherwise. The total number of k-mers inD is tD,k =
∑n−1

i=0 (ni−k+1). We define the support oD(A) of

a k-mer A as the number of distinct positions in D where A appears: oD(A) =
∑n−1

i=0

∑ni−k
j=0 ϕri,A(j).

We define the frequency fD(A) of A in D as the ratio between the number of distinct positions where
A appears in D and the total number of k-mers in D: fD(A) = oD(A)/tD,k.

2.1 Frequent k-mers and Approximations

We are interested in obtaining the set FK(D, k, θ) of frequent k-mers in a dataset D with respect
to a minimum frequency threshold θ, defined as follows.

Definition 1. Given a dataset D, an integer k > 0, and a frequency threshold θ ∈ (0, 1], the set
FK(D, k, θ) of Frequent k-Mers in D w.r.t. θ is the collection of all k-mers with frequency at least
θ in D and of their corresponding frequencies in D:

FK(D, k, θ) = {(A, fD(A)) : fD(A) ≥ θ}. (1)

FK(D, k, θ) can be computed with a single scan of all the k-mers occurrences in D maintaining
the k-mers supports in an appropriate data structure; however, when D is extremely large and k
is not small, the exact computation of FK(D, k, θ) is extremely demanding in terms of time and
memory, since the number of k-mers grows exponentially with k. In this case, a fast to compute
approximation of the set FK(D, k, θ) may be preferable, provided it ensures rigorous guarantees on
its quality. In this work, we focus on the following approximation.

Definition 2. Given a dataset D, an integer k > 0, a frequency threshold θ ∈ (0, 1], and a constant
ε ∈ (0, θ), an ε-approximation of FK(D, k, θ) is a collection C = {(A, fA) : fA ∈ (0, 1]} such that:

– for any (A, fD(A)) ∈ FK(D, k, θ) there is a pair (A, fA) ∈ C;

– for any (A, fA) ∈ C it holds that fD(A) ≥ θ − ε;

– for any (A, fA) ∈ C it holds that |fD(A)− fA| ≤ ε/2.

The definition above guarantees that every frequent k-mer of D is in the approximation and that
no k-mer with frequency < θ − ε is in the approximation. The third condition guarantees that the
estimated frequency fA of A in the approximation is close (i.e, within ε/2) to the frequency fD(A) of
A in D. It is easy to show that obtaining a ε-approximation of FK(D, k, θ) with absolute certainty
requires to process all k-mers in D.
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2.2 Simple Sampling-Based Algorithms and Bounds

We aim to provide an approximation to FK(D, k, θ) with sampling, by processing only randomly
selected portions of D. The simplest sampling scheme is the one in which a random sample is a bag
P of m positions taken uniformly at random, with replacement, from the set PD,k = {(i, j) : i ∈
[0, n−1], j ∈ [0, ni−k]} (note that |PD,k| = tD,k) of all positions where k-mers occurs in the datasetD,
corresponding to m occurrences of k-mers (with repetitions) taken uniformly at random. Given such
sample P , an integer k > 0, and a minimum frequency threshold θ ∈ (0, 1] one can define the set of
frequent k-mers (and their frequencies) in the sample P as FK(P, k, θ) = {(A, fP (A)) : fP (A) ≥ θ},
where fP (A) is the frequency of k-mer A in the sample.

Obtaining a ε-approximation from a random sample with absolute certainty is impossible, thus
we focus on obtaining a ε-approximation with probability 1− δ > 0, where δ ∈ (0, 1) is a confidence
parameter, whose value is provided by the user. Intuitively, the set FK(D, k, θ) of frequent k-mers is
well approximated by the set of frequent k-mers in a random sample P when P is sufficiently large.
One natural question regards how many samples are needed to obtain the desired ε-approximation.
By using Hoeffding’s inequality [Mitzenmacher and Upfal, 2017] to bound the deviation of the
frequency of a k-mer A in the sample from fD(A) and a union bound on the maximum number
σk of k-mers, where σ = |Σ|, we have the following result that provides a first such bound, and a
corresponding first algorithm to obtain a ε-approximation to FK(D, k, θ).

Proposition 1. Consider a sample P of size m of D. If m ≥ 2
ε2

(
ln

(
2σk

)
+ ln

(
1
δ

))
for fixed ε ∈

(0, θ), δ ∈ (0, 1), then, with probability ≥ 1−δ, FK(P, k, θ−ε/2) is a ε-approximation of FK(D, k, θ).

Proof. We first prove that when m ≥ 2
ε2

(
ln

(
2σk

)
+ ln

(
1
δ

))
, then, with probability ≥ 1−δ, for every

k-mer A simultaneously we have |fP (A)− fD(A)| ≤ ε/2.
For an arbitrary k-mer A, given the definition of fP (A) we have that fP (A) =

∑
(i,j)∈P ϕri,A(j)/m

where
∑

(i,j)∈P ϕri,A(j) is the sum of m 0-1 independent random variables. Since E[ϕri,A(j)] =

fD(A), we have that E[fP (A)] = fD(A), and by Hoeffding inequality [Mitzenmacher and Upfal,
2017] we have

Pr(|fP (A)− fD(A)| ≥ ε) = Pr

∣∣∣∣∣∣
∑

(i,j)∈P

ϕri,A(j)−mfD(A)

∣∣∣∣∣∣ ≥ mε

 ≤ 2e
−2m2ε2

m = 2e−2mε2 . (2)

Now define the event EA = “|fP (A)−fD(A)| ≤ ε/2” and let ĒA be the complementary event. From

Equation 2 and the choice of m, Pr(ĒA) ≤ 2e−mε2/2 = δ/σk. By union bound, the probability that
at least one ĒA holds is bounded by

∑
A∈Σk Pr(ĒA) ≤ δ. Therefore with probability at least 1− δ

all events EA hold.
We now prove that when |fP (A) − fD(A)| ≤ ε/2 for every k-mer A, then FK(P, k, θ − ε/2)

is a ε-approximation of FK(D, k, θ). Consider an arbitrary pair (A, fD(A)) ∈ FK(D, k, θ). By the
definition of FK(D, k, θ) we have that fD(A) ≥ θ, and, since |fP (A)− fD(A)| ≤ ε/2, we have that
fP (A) ≥ θ − ε/2, that is there is a pair (A, fA) ∈ FK(P, k, θ − ε/2). Now consider a k-mer A with
fD(A) < θ − ε: since |fP (A)− fD(A)| ≤ ε/2 we have that fP (A) ≤ fD(A) + ε/2 < θ − ε/2, that is
there is no pair (A, fA) ∈ FK(P, k, θ − ε/2). ⊓⊔

In addition, by using known results in statistical learning theory [Vapnik and Chervonenkis,
1971; Mitzenmacher and Upfal, 2017] relating the VC dimension (see Section 3 for its definition) of
a family of functions to a newly derived bound on the family of functions {fD(A)}, we obtain the
following improved bound and algorithm. (The derivation is in Appendix.)

Proposition 2. Let P be a sample of size m of D. For fixed ε ∈ (0, θ), δ ∈ (0, 1), if m ≥
2
ε2

(
1 + ln

(
1
δ

))
then FK(P, k, θ−ε/2) is an ε-approximation for FK(D, k, θ) with probability ≥ 1−δ.
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3 Advanced and Practical Bounds and Algorithms for k-mer
Approximations

Athough the bound of Proposition 2 significantly improves the simple bounds of Section 1, since the
factor ln(2σk) has been reduced to 1, it still has an inverse quadratic dependency with respect to
the accuracy parameter ε, that is problematic when the quantities to estimate are small. In these
cases, one needs a small ε to produce a meaningful approximation (since ε < θ), and the inverse
quadratic dependence of the sample size from ε often results in a sample size larger than the entire
input, defeating the purpose of sampling. The case of k-mers is particularly challenging, since the
sum

∑
A∈Σk fD(A) of all k-mers frequencies is exactly 1. Therefore the higher the number of distinct

k-mers appearing in the input, the lower their frequencies will be, with the consequence that θ (and
therefore ε) typically needs to be set to a very low value. For example, a typical dataset from the
Human Microbiome Project (HMP) has n ≈ 108 reads of (average) length ≈ 100: therefore if we are
interested in k-mers for k = 31, by setting δ = 0.05 the bound of Section 2.2 gives ε ≈ 10−5, that
is only k-mers with frequency ≥ 10−5 could be reliably reported by sampling. However, in datasets
we considered, no or a very small number (≤ 30) of k-mers have frequency ≥ 10−5, therefore
according to the result from Section 2.2 we cannot obtain a meaningful approximation of k-mers
and their frequencies. In the remainder of this section we develop more refined sampling schemes
and estimation techniques leading to a practical sampling-based algorithm.

3.1 Sampling Bags of Positions and VC dimension Bound.

We propose a method to provide an efficiently computable approximation to FK(D, k, θ) when the
minimum frequency θ is low, by properly defining samples so that any k-mer A will appear in a
sample with probability higher than fD(A), thus lessening the dependence of the sample size from
1/ε2. For this to be achievable, we need to relax the notion of approximation defined in Section 2.
In particular, the guarantees, provided by our method, in such relaxed approximation are that all
k-mers with frequency above θ′, with θ′ slightly higher than θ, are reported in output, and that
no k-mer having frequency below θ − ε is reported in output. (See Proposition 5 for the definition
of θ′.) Our experiments show that the fraction of k-mers having frequency ∈ [θ, θ′) which are non
reported is very small. Our method works by sampling bags of positions instead of single positions.
In particular, an element of the sample is now a set of ℓ positions chosen independently at random
from the set PD,k of all positions.

Let Iℓ = {(i1, j1), (i2, j2), . . . , (iℓ, jℓ)} be a bag of ℓ positions for k-mers in D, chosen uniformly

at random from the set PD,k. We define the indicator functions ϕ̂A(Iℓ) that, for a given bag Iℓ of
ℓ positions, is equal to 1 if k-mer A appears in at least one of the ℓ positions in Iℓ and is equal to

0 otherwise. That is ϕ̂A(Iℓ) = min
{

1,
∑

(i,j)∈Iℓ
ϕri,A(j)

}
. We define the ℓ-positions sample Pℓ as a

bag of m bags {Iℓ,0, Iℓ,1, . . . , Iℓ,m−1}, where each Iℓ,j , 0 ≤ j ≤ m− 1 is a bag of ℓ positions, sampled
independently, and

f̂Pℓ
(A) =

1

m

∑
Iℓ,i∈Pℓ

ϕ̂A(Iℓ,i)

ℓ
. (3)

Intuitively, f̂Pℓ
(A) is the biased version of the unbiased estimator

fPℓ
(A) =

1

m

∑
Iℓ,i∈Pℓ

∑
(i,j)∈Iℓ,i

ϕri,A(j)

ℓ
(4)

of fD(A), where the bias arises from considering a value of 1 every time
∑

(i,j)∈Iℓ,i
ϕri,A(j) > 1.

In our analysis we use the VC dimension [Vapnik, 1998; Vapnik and Chervonenkis, 1971], a
statistical learning concept that measures the expressivity of a family of binary functions. We define
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a range space Q as a pair Q = (X,RX) where X is a finite or infinite set and RX is a finite or
infinite family of subsets of X. The members of RX are called ranges. Given D ⊂ X, the projection
of RX on D is defined as projRX

(D) = {r ∩ D : r ∈ RX}. We say that D is shattered by RX if
projRX

(D) = 2|D|. The VC dimension of Q, denoted as V C(Q), is the maximum cardinality of a
subset of X shattered by RX . If there are arbitrary large shattered subsets of X shattered by RX ,
then V C(Q) =∞.

A finite bound on the VC dimension of a range space Q implies a bound on the number of random
samples required to obtain a good approximation of its ranges, defined as follows.

Definition 3. Let Q = (X,RX) be a range space and let D be a finite subset of X. For ε ∈ (0, 1],

a subset B of D is an ε-approximation of D if for all r ∈ RX we have:
∣∣∣ |D ∩ r|

|D| − |B ∩ r|
|B|

∣∣∣ ≤ ε/2.

The following result [Mitzenmacher and Upfal, 2017] relates ε and the probability that a random
sample of size m is an ε-approximation for a range space of VC dimension at most v.

Proposition 3 ([Mitzenmacher and Upfal, 2017]). There is an absolute positive constant c
such that if (X,RX) is a range-space of VC dimension at most v, D is a finite subset of X, and
0 < ε, δ < 1, then a random subset B ⊂ D of cardinality m with m ≥ 4c

ε2

(
v + ln

(
1
δ

))
is a ε-

approximation of D with probability at least 1− δ.

The universal constant c has been experimentally estimated to be at most 0.5 [Löffler and Phillips,
2009].

We now prove an upper bound to the VC dimension V C(Q) of the range space Q associated to

the class of functions ϕ̂A that grows sub-linearly with respect to ℓ. To this aim, we first define the
range space associated to bags of ℓ positions of k-mers.

Definition 4. Let D be a dataset of n reads and let k and ℓ be two integers ≥ 1. We define Q =
(XD,k,ℓ, RD,k,ℓ) to be the following range space:

– XD,k,ℓ is the set of all bags of ℓ positions of k-mers in D, that is the set of all possible subsets,
with repetitions, of size ℓ from from PD,k;

– RD,k,ℓ = {PD,ℓ(A)|A ∈ Σk} is the family of sets of starting positions of k-mers, such that for
each k-mer A, the set PD,ℓ(A) is the set of all bags of ℓ starting positions in D where A appears
at least once.

We prove the following results on the VC dimension of the above range space.

Proposition 4. Let Q the range space from Definition 4. Then: V C(Q) ≤ ⌊log2(ℓ)⌋+ 1.

Proof. If V C(Q) ≥ v, then there must exists a set Z ⊆ XD,k,ℓ with |Z| ≥ v that is shattered. This
means that 2v subsets of Z must be in projection of RD,k,ℓ on Z. If this is true, then every element
of Z needs to belong to exactly 2v−1 such sets. Therefore, every element of Z needs to contain at
least ℓ = 2v−1 distinct k-mers. This implies that v ≤ log2(ℓ) + 1, and the thesis follows. ⊓⊔

Using the result above, we prove the following.

Proposition 5. Let ℓ ≥ 1 be an integer and Pℓ be a bag of m bags of ℓ positions of D with

m ≥ 2

(ℓε)2

(
⌊log2 min(2ℓ, σk)⌋+ ln

(
1

δ

))
. (5)

Then, with probability at least 1− δ:

– for any k-mer A ∈ FK(D, k, θ) such that fD(A) ≥ θ′ = 1− (1− ℓθ)1/ℓ it holds f̂Pℓ
(A) ≥ θ− ε/2;

– for any k-mer A with f̂Pℓ
(A) ≥ θ − ε/2 it holds fD(A) ≥ θ − ε;
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– for any k-mer A ∈ FK(D, k, θ) it holds fD(A) ≥ f̂Pℓ
(A)− ε/2;

– for any k-mer A with f̂Pℓ
(A)− ε/2 ≥ 0, it holds fD(A) ≥ 1− (1− ℓ(f̂Pℓ

(A)− ε/2))1/ℓ;

– for any k-mer A with ℓ(f̂Pℓ
(A) + ε/2) ≤ 1 it holds fD(A) ≤ 1− (1− ℓ(f̂Pℓ

(A) + ε/2))1/ℓ.

Proof. For a given k-mer A, consider the event EA = “|E[f̂Pℓ
(A)] − f̂Pℓ

(A)| ≤ ε/2”. Note that it

is equivalent to “|E[ℓf̂Pℓ
(A)] − ℓf̂Pℓ

(A)| ≤ ℓε/2” and that ℓf̂Pℓ
(A) = 1

m

∑m−1
i=0 ϕ̂A(Iℓ,i), therefore

E[ℓf̂Pℓ
(A)] = E[ϕ̂A(Iℓ,i)]. Now note that if for the range space Q = (XD,k,ℓ, RD,k,ℓ) we consider

rA = PD,ℓ(A), we have that
|XD,k,ℓ∩rA|

|XD,k,ℓ| = E[ϕ̂A(Iℓ,i)], since Iℓ,i is a bag of ℓ positions taken uniformly

at random among all possible such bags and therefore E[ϕ̂A(Iℓ,i)] is the fraction of bags of ℓ positions

that contain at least a position where A occurs (i.e., E[ϕ̂A(Iℓ,i)] is w.r.t. the uniform distribution over
bags of ℓ positions). Therefore, combining Proposition 4 and Proposition 3, for the given choice of m

we have that with probability 1− δ it holds that |E[ℓf̂Pℓ
(A)]− ℓf̂Pℓ

(A)| ≤ ℓε/2,∀A, or, equivalently,

|E[f̂Pℓ
(A)]− f̂Pℓ

(A)| ≤ ε/2,∀A: we assume that this holds in the rest of the proof.

Consider a k-mer A with frequency fD(A) inD. From the definition of f̂Pℓ
(A), we have E[f̂Pℓ

(A)] ≤
E[fPℓ

(A)] = fD(A). Let Xi = ϕ̂A(Iℓ,i)/ℓ be the random variable taking value 1/ℓ if the k-mer A

appears at least once in the ℓ positions of Iℓ,i, and value 0 otherwise. We have that: E
[
f̂Pℓ

(A)
]

=

1
m

∑
Iℓ,i∈Pℓ

E [Xi] = 1
m

∑
Iℓ,i∈Pℓ

1
ℓ Pr (Xi ≥ 1) =

(
1− (1− fD(A))

ℓ
)
/ℓ. Now consider a k-mer A

with fD(A) ≥ 1 − (1 − ℓθ)1/ℓ. By the derivation above we have that E
[
f̂Pℓ

(A)
]
≥ θ, and therefore

its frequency f̂Pℓ
(A) in the sample Pℓ satisfies f̂Pℓ

(A) ≥ θ − ε/2, that completes the proof of the
first part.

For the second part, consider a k-mer A with fD(A) < θ − ε. By the derivation above, we have

that E[f̂Pℓ
(A)] ≤ E[fPℓ

(A)] = fD(A) < θ − ε. Since |E[f̂Pℓ
(A)] − f̂Pℓ

(A)| ≤ ε/2,∀A, we have that

f̂Pℓ
(A) < θ − ε/2, which proves the second part of the result.

The third result follows from |E[f̂Pℓ
(A)]− f̂Pℓ

(A)| ≤ ε/2 and E[f̂Pℓ
(A)] ≤ fD(A).

The last two results follow from |E[f̂Pℓ
(A)]− f̂Pℓ

(A)| ≤ ε/2 and E[f̂Pℓ
(A)] = (1−(1−fD(A))ℓ)/ℓ.

⊓⊔

Note that from Proposition 5 the set {(A, fPℓ
(A)) : f̂Pℓ

(A) ≥ θ−ε/2} is almost a ε-approximation

to FK(D, k, θ): in particular, there may be k-mers A for which E[f̂Pℓ
(A)] = (1−(1− fD(A))

ℓ
)/ℓ < θ

while fD(A) = E[fPℓ
(A)] ≥ θ and such that for the given sample Pℓ we have f̂Pℓ

(A) ≈ E[f̂Pℓ
(A)]−ε/2.

While this can happen, we can limit the probability of this happening by appropriately choosing ℓ,
and still enjoy the reduction in sample size of the order of log2 ℓ

ℓ2 w.r.t. Proposition 2 obtained by
considering bags of bags of ℓ positions. In particular, this result allows the user to set θ, ε, δ, and ℓ
to effectively find, with probability at least 1−δ, all frequent k-mers A for which fD(A) ≥ θ′ and do
not report any k-mer with frequency below θ − ε, while still being able to report in output almost
all k-mers with frequency ∈ [θ, θ′). Our experimental analysis (Section 4) shows that in practice
choosing ℓ close from below to 1/θ is very effective to obtain such result. Then, the third, fourth,

and fifth guarantees from Proposition 5 state that we can use the biased estimates f̂Pℓ
(A) to derive

guaranteed upper and lower bounds to fD(A) that will be much tighter than the one obtained using
the bounds of Section 2.2. We will show how to obtain further improved upper and lower bounds
to fD(A) in Section 3.3. Such lower bounds ℓbA can be used, for example, to prove that the set
{(A, fPℓ

(A)) : ℓbA ≥ θ − ε} enjoys the same last four guarantees from Proposition 5 while the
first one holds for a θ′ < 1 − (1 − ℓθ)1/ℓ; therefore, when false negatives are problematic, the set
{(A, fPℓ

(A)) : ℓbA ≥ θ − ε} can be used to obtain a different approximation of FK(D, k, θ) with
fewer false negatives.
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3.2 SAKEIMA: An Efficient Algorithm to Approximate Frequent k-mers

We now present our SAKEIMAthat builds on Proposition 5 and efficiently samples a bag Pℓ of bags of
ℓ-positions from D to obtain an approximation of the set FK(D, k, θ) with probability 1− δ, where
δ is a parameter provided by the user.

Algorithm 1: SAKEIMA

Input: dataset D, total number of k-mers tD,k in D,
frequency threshold θ, accuracy parameter ε ∈ (0, θ),
confidence parameter δ ∈ (0, 1), integer ℓ ≥ 1.
Output: approximation {(A, fA)} of FK(D, k, θ) with probability ≥ 1− δ.

1 m←
⌈

2
(ℓε)2

(
⌊log2 min(2ℓ, σk)⌋+ ln

(
2
δ

))⌉
; λ← mℓ

tD,k
;

2 T ← empty hash table;
3 forall reads ri ∈ D do
4 forall j ∈ [0, ni − k] do
5 A← k-mer in position j of read ri;
6 a← Poisson(λ);
7 if a > 0 then T [A]← T [A] + a;

8 O ← ∅; t←
∑

A∈T T [A];
9 Pℓ ← random partition of the occurrences in T into m bags;

10 forall k-mers A ∈ T do
11 fA ← T [A]/t;
12 PA ← bags of Pℓ where A appears at least once;

13 f̂A ← |PA|/(mℓ);

14 if f̂A ≥ θ − ε/2 then O ← O ∪ (A, fA);

15 return O;

SAKEIMA is described in Algorithm 1. Athough SAKEIMA performs a linear scan of the input
dataset, it practically reduces the number of k-mers that need to be processed with the following
stategy. SAKEIMA performs a pass on the stream of k-mers appearing in D, and for each position in
the stream it draws the number a of times that the position appears in the sample Pℓ independently
at random from the Poisson distribution Poisson(λ) of parameter λ = mℓ/tD,k. SAKEIMA stores
such values, if strictly positive, in a counting structure T (lines 3-7) that keeps, for each k-mer A,
the total number of occurrences of A in the sample Pℓ. Note that tD,k can be computed with a
very quick linear scan of the dataset, where ni is computed for every ri ∈ D without extracting
and processing (e.g., inserting or updating information for) k-mers; in alternative a lower bound
to tD,k can be used, simply resulting in a number of samples higher than needed. For each k-mer
A appearing at least once in the sample, the unbiased estimate fA is computed in line 11 as the
number T [A] of occurrences of A in the sample Pℓ divided by the total number of positions in the

sample t. The biased estimate f̂A can be computed partitioning the T [A] occurrences of A into m

bags Iℓ,0, . . . , Iℓ,m−1; f̂A is then simply the ratio between the number of bags where A appears at
least once and mℓ. We describe a more efficient way of computing such biased estimate at the end
of this section. Then SAKEIMA flags A as frequent if f̂A ≥ θ − ε/2 (line 14) and, in this case, the
couple (A, fA) is added to the output set O (line 15), since fA is the best (and unbiased) estimate
to fD(A).

Note that SAKEIMA does not sample m bags of exactly ℓ positions each, since the number of
occurrences of each position in D in the sample Pℓ is sampled independently from a Poisson distri-
bution, even if the expected number of total occurrences sampled from the algorithm is mℓ. However,
the independent Poisson distributions used by SAKEIMA provide an accurate approximation of the
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random sampling of exactly mℓ positions used in the analysis of Section 3.1. In particular, this holds
when one focuses on the events of interests for our approximation of Section 3.1 (e.g., the event

“there exists a k-mer A such that |E[f̂Pℓ
(A)] − f̂Pℓ

(A)| > ε/2”). In fact, a simple adaptation of a
known result (Corollary 5.11 of [Mitzenmacher and Upfal, 2017]) on the relation between sampling
with replacement and the use of independent Poisson distributions gives the following.

Proposition 6. Let E be an event whose probability is either monotonically increasing or mono-
tonically decreasing in the number of sampled positions. If E has probability p when the independent
Poisson distributions are used, then E has probability at most 2p when the sampling with replacement
is used.

As a simple corollary, the output O features the guarantees of Proposition 5 with probability ≥ 1−δ′,
with δ′ = 2δ.

The technique we just described can be used to avoid the exact computation of f̂A, which requires
to maintain and update the counters for the m buckets; in fact, we can approximate the number
of occurrences of a k-mer A, appearing T [A] times in the random sample of SAKEIMA into a given
bucket as a sample from Poisson(T [A]/m). This means that the number of buckets where A will
be inserted at least once is well approximated by a sample from Binomial(m, 1− e−T [A]/m), which
models the number of successes in m independent trials with probability of success 1 − e−T [A]/m.
Due to this second Poisson approximation, we obtain that the output O provides the guarantees of
Proposition 5 with probability ≥ 1 − δ′′, with δ′′ = 4δ. In terms of Algorithm 1, such modification
simply requires to substitute 2

δ with 4
δ in line 1, to remove line 9, and to substitute lines 12-13 with

“f̂A ← Binomial(m, 1− e−T [A]/m)/(mℓ)”. This also allows to efficiently compute multiple values of

f̂A, corresponding to different values of ℓ, by simply taking samples from binomial distributions of
different appropriate parameters. (In particular, if one samples a total t of k-mers, then the value
m to be used for both parameters of the binomial distribution is t/ℓ.) The next section shows why
this is useful.

3.3 Improved Lower and Upper Bounds to k-mers Frequencies

Note that Proposition 5 guarantees that we can obtain upper and lower bounds to fD(A) for every
A ∈ FK(D, k, θ) from the sample of bags of ℓ positions. These bounds are meaningful only in specific
ranges of the frequencies; for example, the lower bound from the third guarantee in Proposition 5
is meaningful when the frequency of A is fairly low, i.e fD(A) ≈ 1/ℓ, while for very frequent k-mers
they could be a multiplicative factor 1/ℓ away from than the correct value. For example, if a k-mer
is very frequent and appears in all bags of ℓ k-mers in a sample S, its corresponding lower bound is
still only 1/ℓ− ε/2.

However, Proposition 5 can be generalized to obtain tighter upper and lower bounds to the
frequency of all k-mers. For given ℓ, ε, and δ, let m as given in Proposition 5. Note that the total
number of k-mer’s positions in the sample Pℓ is mℓ. Let L be a set of integer values L = {ℓi} with
ℓi ∈ [1,mℓ],∀i = 0, . . . , |L|− 1. Now, for every ℓi ∈ L, we can partition the same mℓ k-mers that are
in Pℓ into mi = mℓ/ℓi partitions having size ℓi. Let Pℓi be such a random partition of such positions
into mi bags of ℓi positions each. Note that each Pℓi is a “valid” sample (i.e., a sample of independent
bags of positions, each obtained by uniform sampling with replacement) for Proposition 5, even if
the Pℓi ’s are not independent. From each Pℓi , we define a maximum deviation εi from Proposition 5

as εi = 1
ℓi

√
2
mi

(⌊log2(min(2ℓi, σk))⌋+ ln (|L|/δ)). We have the following result.

Proposition 7. With probability at least 1 − δ, for all k-mers A simultaneously and for all the
random partitions induced by L it holds

– fD(A) ≥ max{f̂Pℓi
(A)− εi/2 : i = 0, . . . , |L| − 1};

– fD(A) ≥ max{1− (1− ℓ(f̂Pℓi
(A)− εi/2))1/ℓ : i = 0, . . . , |L| − 1 and f̂Pℓi

(A)− εi/2 ≥ 0};
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– fD(A) ≤ min{1− (1− ℓ(f̂Pℓi
(A) + εi/2))1/ℓ : i = 0, . . . , |L| − 1 and f̂Pℓi

(A) + εi/2 ≤ 1/ℓ}.

Proof. Combining proposition 4 and Proposition 3 and by union bound on the |L| values of i, we have

that with probability 1 − δ it holds that |E[f̂Pℓi
(A)] − f̂Pℓi

(A)| ≤ ε/2,∀A and ∀i = 0, . . . , |L| − 1:
we assume that this holds in the rest of the proof. To prove the lower bound, note that since
E[f̂Pℓi

(A)] = (1− (1− fD(A))ℓ)/ℓ, from the above we have that

(1− (1− fD(A))ℓ)/ℓ ≥ f̂Pℓi
(A)− εi/2

that is equivalent to
fD(A) ≥ 1− (1− ℓ(f̂Pℓi

(A)− εi/2))1/ℓ

when f̂Pℓi
(A)− εi/2 ≥ 0. The proof of the upper bound is analogous. ⊓⊔

In our experiments, we use L = {ℓi} with ℓi = ℓ/2i,∀i ∈ [0, ⌊log2 ℓ⌋ − 1]; in this case, note that
Pℓ0 = Pℓ. Using this scheme, we can compute upper and lower bounds for k-mers having frequencies
of many different orders of magnitude, but any (application dependent) distribution can be specified
by the user. Then, these upper and lower bounds can be used to obtain different approximations of
FK(D, k, θ) with different guarantees. For example, by reporting all k-mers (and their frequencies)
that have an upper bound ≥ θ, we have an approximation that guarantees that all k-mers A with
fD(A) ≥ θ are in the approximation.

4 Experimental Results

In this section we present the results of our experimental evaluation for SAKEIMA. Section 4.1 describes
the datasets, our implementation for SAKEIMA5, and the baseline for comparisons. In Section 4.2, we
report the results for computing the approximation of the frequent k-mers using SAKEIMA. Section
4.3 reports the results of using our approximation to compute abundance-based and presence-based
distances between metagenomic datasets.

4.1 Datasets and Implementation

We considered six datasets from the Human Microbiome Project (HMP)6, one of the largest publicly
available collection of metagenomic datasets from high-throughput sequencing. In particular, we
selected the three largest datasets of stool and the three largest of tongue dorsum (Table 1). These
datasets constitute the most challenging instances, due to their size, and provide a test case with
different degrees of similarities among datasets. We implemented SAKEIMA in C++ as a modification of
Jellyfish [Marçais and Kingsford, 2011] (the version we used is 2.2.107), a very popular and efficient
algorithm for exact k-mer counting. Doing so, our algorithm enjoys the succinct counting data
structure provided by Jellyfish publicly available implementation. We remark that our sampling-
based approach can be used in combination with any other highly tuned method available for exact,
approximate, and parallel k-mer counting. For this reason, we only compare SAKEIMA with the
exact counting performed by Jellyfish, since they share the underlying characteristics, allowing us
to evaluate the impact of SAKEIMA’s sampling strategy.

For running time and memory we computed the average from 10 runs. When comparing Jellyfish
and SAKEIMA using 1 worker, we show the CPU time, while when using multiple threads we show
the overall running time. We did not include the time to compute tD,k in our experiments since we
assume it is provided in input (for example, computed while the dataset of read is created). In cases

5 Available at https://github.com/VandinLab/SAKEIMA
6 https://hmpdacc.org/HMASM
7 https://github.com/gmarcais/Jellyfish
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when it is not known in advance, tD,k can be computed by simply scanning all the k-mers without
counting them. We computed the time required for this task for the datasets we consider and it was
always small (i.e., always less than 175 seconds with 1 worker, and than 70 seconds with 32 workers)
compared to the time for counting k-mers.

For the computation of the abundance-based distances from the k-mer counts of two dataset, we
implemented in C++ a simple algorithm that loads the counts of one dataset in main memory and
then performs one pass on the counts of the other dataset, producing the distances in output. We
executed all our experiments on the same machine with 512 GB of RAM and 2.30 GHz Intel Xeon
CPUs (with 64 cores in total), compiling both implementations with GCC 8. SAKEIMA can be used in
combination with more efficient algorithms and implementations for the computation of these (and
other) distances [Benoit et al., 2016], resulting in speed-ups analogous to the ones we present below.
For all the experiments of SAKEIMA, given θ and a dataset D, we fixed the parameters δ = 0.1,
ε = θ − 2/tD,k, and we fix ℓ = ⌊0.9/θ⌋.

4.2 Approximation of the Frequent k-mers

We fixed k = 31, and we compared SAKEIMA with the exact counting of all k-mers (from Jellyfish)
in terms of:

(i) running time, including, for both algorithms, the time required to write the output on disk;

(ii) memory requirement. We also assessed the accuracy of the output of SAKEIMA.

Figure 2 shows the average running times and peak memory as function of θ, using 1 worker.
Note that for the exact counting algorithm these metrics do not depend on θ, since it always counts
all k-mers. SAKEIMA is always faster than the exact counting, with a difference that increases when θ
increases and a speed-up around 2 even for θ = 2·10−8. The memory requirement of SAKEIMA reduces
when θ increases, and for θ = 2 · 10−8 it is half of the memory required by the exact counting. This
is due to SAKEIMA’s sample size being much smaller than the dataset size (Figure 2(d)), therefore
a large portion of extremely low frequency k-mers are naturally left out from the random sample
and do not need to be accounted for in the counting data structure, as confirmed by counting the
number of distinct k-mers that are inserted in the counting data structure by the two algorithms
(Figure 2(c)). (The difference between the memory requirement and the number of distinct k-mers
is given by Jellyfish’s strategy to doubles the size of the counting data structure when it is full.)

Figure 3 shows the average running times of SAKEIMA and Jellyfish as function of θ and the number
of workers w for counting k-mer from dataset SRS043663. The memory used by both approaches
does not depend on w, therefore it is the same of Figure 2. We can see that increasing w reduces
the running time of both approaches, and that the relative improvements provided by the sampling
strategy of SAKEIMA is mantained. This shows that SAKEIMA is well suited to be combined with
parallel approaches.

In terms of quality of the approximation, the output of SAKEIMA satisfied the guarantees given
by Proposition 5 for all runs of our experiments, therefore with probability higher than 1 − δ.
While SAKEIMA may incur in false negatives, its false negative ratio (i.e., the fraction of k-mers
in FK(D, k, θ) not reported by SAKEIMA) is always ≤ 3 · 10−4 (Figure 4(a)), even if the sampling
technique of Section 3.1 does not provide rigorous guarantees on such quantity. Therefore SAKEIMA

is very effective in reporting almost all frequent k-mers. As mentioned in Section 3.3, SAKEIMA can
be easily modified so to report all frequent k-mers in output, even if at the cost of reporting also
more k-mers with frequency between θ− ε and θ. In addition, the estimated frequencies fA reported
by SAKEIMA are always close to the true values fD(A), with a small maximum deviation |fA−fD(A)|
(Figure 4(b)), and an even smaller average deviation (Figure 4(c)). In addition, the upper and lower
bounds computed as in Section 3.3 provide small confidence intervals always containing the value
fD(A) (e.g., Figure 4(d) for dataset SRS062761), and could be used to obtain sets of k-mers with
various guarantees from the sample used by SAKEIMA.
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Fig. 2: Running time, memory requirements, and number of distinct k-mers counted, for SAKEIMA

and exact counting as function of θ. (a) Running time (average ±2 standard deviations from 10
runs). (b) Memory requirement (the standard deviation is not shown when all the 10 runs have the
same peak memory). (c) Number of distinct k-mers counted. (d) Sample sizes of SAKEIMA, total
size tD,k of the datasets, and number (c.p.) of dataset’s distinct covered positions (i.e., included in
SAKEIMA’s sample), as function of θ.

4.3 Application to Metagenomics: Computation of Ecological Distances

We evaluate the use of SAKEIMA to speed up the computation of commonly used k-mer based
ecological distances [Benoit et al., 2016] between datasets of Next-Generation Sequencing (NGS)
reads. We present results for the Bray-Curtis distance; analogous results hold for other distances
(see Appendix).

We first investigated how the distances change when those are computed considering only the
frequent k-mers (w.r.t. a frequency threshold θ) instead that the full spectrum of k-mers appearing
in the data. Therefore, given a pair of datasets D1 and D2 and θ, we computed the sets O1 =
FK(D1, k, θ) and O2 = FK(D2, k, θ) using Jellyfish and then computed a generalized version of the
distances for all pairs of datasets we used for our experiments. For the Bray-Curtis distance, this

generalization is defined as: BC(D1,D2,O1,O2) = 1− 2
∑

A∈O1∩O2
min{oD1

(A),oD2
(A)}∑

A∈O1
oD1

(A)+
∑

A∈O2
oD2

(A) .

Note that when θ ≤ 10−10 then FK(D, k, θ) coincides with the set of all k-mers, for any of the
datasets we tested. The results (Figure 5(a)) show that for θ up to 5×10−8 the values of the distances
are fairly stable and therefore one can use only frequent k-mers for such values of θ to compute the
distances, and that for θ up to 10−7 the relation between distances of different pairs of datasets
are almost always conserved. We underline that the exact counting approach needs to count all the
k-mers and only afterwards can filter the infrequent ones before writing them to disk to compute
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Fig. 3: Running time for SAKEIMA and exact counting for dataset SRS043663, as function of θ and
the number of workers w.

FK(D, k, θ). We then used SAKEIMA to extract approximations (of k-mers and their frequencies)
of FK(D1, k, θ) and FK(D2, k, θ) and used such approximations to compute the distances among
datasets (Figure 5(b)). Strikingly, the distances computed from the output of SAKEIMA are very
close to their exact variant (Figure 5(c)). Interestingly this holds also for the Jaccard distance, a
presence-based distance that does not depend neither on k-mer abundances nor on k-mer ranking
by frequencies.

We then compared, for different values of θ, the total running time required to compute the
approximations of the frequent k-mers using SAKEIMA for all datasets in Table 1 and all distances
among such datasets using SAKEIMA approximations with the running time required when the exact
counting algorithm is used for the same tasks. SAKEIMA reduces the computing time by more than
75% (Figure 5(d)). This result comes from both the efficiency of SAKEIMA and from the fact that
by focusing on the the most frequent k-mers we greatly reduce the number of distinct k-mers that
need to be processed for computing the distances. Therefore SAKEIMA can be used for a very fast
comparison of metagenomic datasets while preserving the ability of distinguishing similar datasets
from different datasets.

5 Conclusion

We presented SAKEIMA, a sampling-based algorithm to approximate frequent k-mers and their fre-
quencies with rigorous guarantees on the quality of the approximation. We show that SAKEIMA can
be used to speed up the analysis of large high-throughput sequencing metagenomic datasets, in par-
ticular to compute abundance-based distances among such datasets. Interestingly SAKEIMA allows
to compute accurate approximations also for presence-based distances (e.g., the Jaccard distance),
even if for such distances other, potentially faster, tools [Ondov et al., 2016] are available. SAKEIMA
can be combined with any highly optimized method that counts all k-mers in a set of strings, includ-
ing recent parallel methods designed for comparative metagenomics [Benoit et al., 2016]. While we
presented results for k-mers from datasets of short reads, SAKEIMA can also be used for the analysis
of spaced seeds [Břinda et al., 2015], large datasets of long reads, and whole genome sequences.
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Fig. 4: Quality of the approximation of FK(D, k, θ) produced by SAKEIMA. (a) False negative rate,
i.e., the fraction r of k-mers in FK(D, k, θ) not reported by SAKEIMA. (b) Maximum deviation
|fA−fD(A)| of the estimates reported by SAKEIMA for various θ. (c) Average value of |fA−fD(A)| for
the k-mers A reported by SAKEIMA for various θ. (d) Frequencies and bounds for dataset SRS062761
and θ = 10−8 shown for k-mers sorted in increasing order of exact frequencies. Red: exact frequencies
fD(A). Green: estimate fA of fD(A) from SAKEIMA. Blue: lower bound lbA to fD(A) from SAKEIMA.
Brown: upper bound ubA to fD(A) from SAKEIMA.
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Fig. 5: Results for Bray-Curtis (BC) distances of metagenomic datasets. (a) BC distance computed
using k-mers with frequency ≥ θ. (b) BC distances computed using the approximation of k-mers
with frequency ≥ θ from SAKEIMA. (c) Comparison of the BC distance using all k-mers with exact
counts and the approximation of frequent k-mers by SAKEIMA. (d) Total time required by SAKEIMA

and the exact approach to find frequent k-mers and compute all distances between datasets as a
function of θ.
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8 Tables

Table 1: Datasets for our experimental evaluation. For each dataset D the table shows: the dataset
name and site ((s) for stool, (t) for tongue dorsum); the total number tD,k of k-mers (k = 31)
in D; the number |D| of reads it contains; the maximum read length maxni = maxi{ni|ri ∈ D}; the

average read length avgni
=

∑n−1
i=0 ni/n.
dataset tD,k |D| maxni avgni

SRS024388(s) 7.92 · 109 1.20 · 108 102 97.21

SRS011239(s) 8.13 · 109 1.24 · 108 102 96.69

SRS024075(s) 8.82 · 109 1.38 · 108 96 94.88

SRS075404(t) 7.75 · 109 1.22 · 108 102 94.51

SRS062761(t) 8.26 · 109 1.18 · 108 101 101.00

SRS043663(t) 9.15 · 109 1.31 · 108 101 101.00
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Appendix

A Proof of Proposition 2

In this section we derive the proof of Proposition 2. In our analysis we use the VC dimension of the
range space associated to k-mers. We now define the range space associated to k-mers and derive
an upper bound to its VC dimension.

Definition 5. Let D be a bag of n reads and let k > 0 be an integer. For any k-mer A, let PD,k(A)
be the set of elements of PD,k corresponding to the occurrences of A in D. We define the range space
Q = (XD,k, RD,k) associated to the k-mers in D as follows:

– XD,k is the set of all occurrences of k-mers in D, that is: XD,k = PD,k;

– RD,k = {PD,k(A)|A ∈ Σk}.

Note that for any A, if we consider r = PD,k(A) ⊆ PD,k we have |XD,k ∩ r|/|XD,k| = fD(A).
Therefore, by taking D = XD,k and RX = RD,k in Definition 3, we have that an ε-approximation
B of XD,k guarantees that |fD(A)− fB(A)| ≤ ε/2.

A trivial upper bound [Shalev-Shwartz and Ben-David, 2014] to the VC dimension v of the range
space Q = (XD,k, RD,k) is given by v ≤ ⌊log2 |RD,k|⌋ = ⌊log2 σ

k⌋. However, we derive the following
tighter upper bound to v, that is instrumental in obtaining an improved bound on the number of
samples required for a ε-approximation.

Proposition 8. Let D be a bag of n reads, k > 0 an integer, and Q = (XD,k, RD,k) be the corre-
sponding range space. Then the VC dimension V C(Q) of Q is 1.

Proof. The proof is by contradiction. Assume that V C(Q) = v′ > 1: therefore there exists a set
X ⊆ XD,k with |X| ≥ v′ that can be shattered by RD,k. In order to be shattered, there should

exist at least 2v
′
k-mers A1, A2, . . . , A2v′ such that the projection of their corresponding ranges on

X gives all subsets of X. Consider two subsets X ′, X ′′ of X for which X ′ ̸= X ′′ and X ′ ∩X ′′ ̸= ∅.
Since X ′ and X ′′ must be in the projection of the ranges corresponding to A1, A2, . . . , A2v′ on X,
there must exist two distinct k-mers Ai and Aj for which PD,k(Ai) = X ′ and PD,k(Aj) = X ′′. This
is a contradiction, since if X ′ ∩X ′′ ̸= ∅, then each position in X ′ ∩X ′′ must be the starting position
for the two distinct k-mers Ai and Aj , while a position can be the starting position for only one
k-mer. ⊓⊔

Proposition 2 simply derives from from Proposition 3 and from Proposition 8.

B Frequency Histograms of 31-mers

We show in Figure S1 the exact frequency histograms we computed with Jellyfish of the k-mers
(with k = 31) for all the datasets we considered in our experiments. For every dataset we computed
1
2

√
2

tD,k

(
1 + log( 1

δ )
)

(with δ = 0.05), that is a lower bound to the frequency threshold θ−ε/2 (drawn

in the plots with red vertical lines) that can be obtained from the results of Section 2.2.

C Distances for Datasets of Reads

In our experimental evaluation we considered three abundance-based distances and one presence-
based distance commonly used to compare metagenomic datasets [Benoit et al., 2016], and general-
ized them to the scenario in which only a set of all k-mers are observed. Let O be a subset of the set
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Fig. S1: Histograms of the exact frequencies of the datasets we tested. The vertical red line is drawn

in correspondence of a lower bound to θ − ε/2 = 1
2

√
2

tD,k

(
1 + log( 1

δ )
)

(with δ = 0.05), that is the

lowest achievable frequency threshold using the results of Section 2.2.

of all possible k-mers. Define the indicator functions: 1. fD,O(A) = fD(A) if A ∈ O, fD,O(A) = 0
otherwise; and 2. 3. oD,O(A) = oD(A) if A ∈ O, oD,O(A) = 0 otherwise.Given two datasets D1,D2,
let O1 and O2 be the k-mers observed for D1 and D2, respectively. We considered the following
distances:

– the Bray-Curtis distance: BC(D1,D2,O1,O2) = 1− 2
∑

A∈Σk min{oD1,O1
(A),oD2,O2

(A)}∑
A∈Σk oD1,O1

(A)+
∑

A∈Σk oD2,O2
(A) ;

– the Whittaker distance: Wt(D1,D2,O1,O2) = 1
2

∑
A∈Σk |fD1,O1(A)− fD2,O2(A)|;

– the Chord distance: Ch(D1,D2,O1,O2) =

√
2− 2

∑
A∈Σk

oD1,O1
(A)oD2,O2

(A)√∑
A∈Σk oD1,O1

(A)2
√∑

A∈Σk oD2,O2
(A)2

;

– the Jaccard distance: Jc(D1,D2,O1,O2) = 1− |O1∩O2|
|O1∪O2| .

For the Jaccard distance, we considered only k-mers appearing at least twice in the datasets,
since k-mers with count 1 often represents sequencing errors and greatly affect the accuracy of
presence-based distances, such as the Jaccard distance.

D Results for other distances
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Fig. S2: Whittaker distance on exact frequent k-
mers.

Fig. S3: Whittaker distance on output of
SAKEIMA.

Fig. S4: Chord distance on exact frequent k-mers. Fig. S5: Chord distance on output of SAKEIMA.

Fig. S6: Jaccard distance on exact frequent k-
mers.

Fig. S7: Jaccard distance on output of SAKEIMA.

Fig. S8: Whittaker distance. Fig. S9: Chord distance.
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Fig. S10: Jaccard distance.


