
Code optimization techniques

Francesco Versaci & Alberto Bertoldo

Advanced Computing Group
Dept. of Information Engineering, University of Padova, Italy

cyberto@dei.unipd.it

May 19, 2009

Francesco Versaci Code optimization techniques

cyberto@dei.unipd.it


The Four Commandments

1. The Pareto principle
80% of the effects comes from 20% of the causes

80% of the performance is affected by 20% of the code

80% of the final performance is obtained by 20% of the efforts

Do you really need/want to spend 4x the time to get 25% speedup?

2. The Clever Man principle
Exploit compiler’s optimization flags

3. The Occam’s razor
Entia non sunt multiplicanda praeter necessitatema

aEntities should not be multiplied beyond necessity

4. The Weel Reinvention principle
Reuse already optimized code as much as possible

Francesco Versaci Code optimization techniques



Development tools

Francesco Versaci Code optimization techniques



Choosing compilers
Obey the Clever Man principle

GNU Compiler Collectiona

ahttp://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

-On enable machine-independent optimizations (e.g. -O3)

-fx manually enable/disable machine-independent optimizations

-mx automatic machine-dependent optimizations

-mtune=cpu-type restructuring without using a specific ISA
-march=cpu-type use specific ISA (e.g. SSE2)

Intel Compilersa

ahttp://www.intel.com/cd/software/products/asmo-na/eng/
compilers/284264.htm

-On enable machine-independent optimizations (e.g. -O3)

-xt automatic machine-dependent optimizations

-parallel automatic parallelization for multithreaded architectures

Francesco Versaci Code optimization techniques

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/284264.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/284264.htm


Using libraries
Obey the Weel Reinvention principle

Math libraries
BLAS & LAPACK, FFT, math operations, random number generation

Vendor libraries (IBM ESSL, Intel MKL, AMD CML)

Generated libraries (ATLAS, Spiral, FFTW, Goto)

Other libraries
Image and signal processing, string processing, compression,
cryptography, etc.

Vendor libraries (Intel IPP, AMD PL)

Generated libraries (ATLAS, Spiral, FFTW, Goto)

Template Libraries
Containers, iterators, algorithms, and functors

C++ Standard Library

Boost C++

Francesco Versaci Code optimization techniques



Other compiler techniques

Use compiler-specific directives to ease compiler’s job (pragmas)
Use machine-specific instructions
Use intrinsics

Francesco Versaci Code optimization techniques



C/C++ optimizations

Francesco Versaci Code optimization techniques



Floating-point operations

Use the f or F suffix (for example, 3.14f) to specify a constant
value of type float
Use function prototypes for all functions that accept arguments of
type float
Extract common subexpressions, especially costly ones (e.g.
divisions)
Addition are quicker than multiplications
Use array notation instead of pointer notation when working with
arrays

Francesco Versaci Code optimization techniques



Conditional instructions

Make the fall-through path more probable in if statements
Put high-probability case before switch statements
Exploit short circuiting
Exploit bitwise operators instead of logic operators
Avoid postincrement and postdecrement in conditions
Remember that compound conditions are translated into a series
of conditional branches
Use tables indexed on conditions instead of switch or if
statements
Exploit else-clause removal

Francesco Versaci Code optimization techniques



Function calls
General optimizations

Avoid function pointers
Declare a nonmember function as static
Use the const specifier for member functions
Avoid virtual functions and virtual inheritance
Fully prototype all functions
Don’t define a return value if not used

Francesco Versaci Code optimization techniques



Function calls
Arguments

Using global variables may prevent local optimizations
Constant arguments improve optimizations
Put frequently used parameters in the leftmost positions
Pass or return a pointer to structure/union/class, or pass it by
reference
Pass non-aggregate types (i.e. int and short) by value rather
than passing by reference
If you bind functions, use the same order for parameters

Francesco Versaci Code optimization techniques



Inline functions or macros

Best candidates
Small size
Frequently called
Few callers
One or more compile-time constant parameters used in if,
switch, for
Perform only a load/store or simple comparisons/operations

Drawbacks
Increased code size
Poor I-cache efficiency

Francesco Versaci Code optimization techniques



Memory management

Dynamic memory
Minimize the use of malloc
Use efficient memory managers
Enforce memory alignment
Check for memory leaks

Structures
Declare the largest members first
Place variables near each other if they are frequently used
together
Adjust structure sizes to power of two
Sort and pad C and C++ structures to achieve natural alignment

Francesco Versaci Code optimization techniques



Memory management
Variables

Prefer local automatic variables
Declare local variables in the inner most scope
Sort local variables in decreasing order
Prefer static global variables to external variables
Group external variables into structures or arrays
If a global variable is needed, copy its value to a local variable
and use it
Avoid taking the address of a variable with & operator
Use constants instead of variables, especially as loop bounds
Use register-sized integers
Use the smallest floating-point precision

Francesco Versaci Code optimization techniques



Expressions

Reduce store-to-load dependencies
Assign common subexpressions to local automatic variables
Avoid both explicit and implicit (pay attention!)
integer/floating-point conversion
Code the integer and floating-point arithmetic in separate
computations
Transform division by the same denominator in multiplications
Avoid exception handling
Prefer initialization over assignment
Minimize both implicit and explicit type casting
Pay attention using volatile and register

64-bit mode
Use 64-bit mode only if you need to access large data
Avoid performing mixed 32- and 64-bit operations
Use long for variables which will be frequently accessed

Francesco Versaci Code optimization techniques



Loops

Compilers already do most loop transformations
Recall the Occam’s razor: your “clever” optimization may prevent
compiler’s (much more clever) optimizations

Take constant expressions out of the loop
Count down instead of up
Minimize stride
Consider store VS recompute tradeoffs
Keep array index expressions as simple as possible
Keep index type compatible to pointer type
Simplify loop expressions as much as possible
If loop expressions ARE complicated, try manual
transformations1

1http://en.wikipedia.org/wiki/Loop_optimization

Francesco Versaci Code optimization techniques

http://en.wikipedia.org/wiki/Loop_optimization


Input/Output

Use binary streams instead of text streams
Use the low-level I/O functions, such as open and close

Design your own buffering for the low-level functions
Access multiple of 4K, which is the size of a page

Francesco Versaci Code optimization techniques


	Development tools
	C/C++ optimizations

