Peer-Reviewed Journal Papers
2007
-
G. Sparacino, F. Zanderigo, S. Corazza, A. Maran, A. Facchinetti, and C. Cobelli. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor timeseries. IEEE Trans Biomed Eng, 54(5):931-937, May 2007
- A. Facchinetti, G. Sparacino, and C. Cobelli. Reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data: role of sensor calibration. J Diabetes Sci Technol, 1(5):617-623, Sep 2007
2008
-
G. Sparacino, A. Facchinetti, A. Maran, and C. Cobelli. Continuous glucose monitoring time series and hypo/hyperglycemia prevention: requirements, methods, open problems. Curr Diabetes Rev, 4(3):181-192, Aug 2008
2009
-
Z. Sawacha, G. Cristoferi, G. Guarneri, S. Corazza, G. Dona, P. Denti, A. Facchinetti, A. Avogaro, and C. Cobelli. Characterizing multisegment foot kinematics during gait in diabetic foot patients. J Neuroeng Rehabil, 6:37, 2009
- D. Bruttomesso, A. Farret, S. Costa, M. C. Marescotti, M. Vettore, A. Avogaro, A. Tiengo, C. Dalla Man, J. Place, A. Facchinetti, S. Guerra, L. Magni, G. De Nicolao, C. Cobelli, E. Renard, and A. Maran. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier. J Diabetes Sci Technol, 3(5):1014-1021, Sep 2009
2010
-
A. Facchinetti, G. Sparacino, and C. Cobelli. Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies. J Diabetes Sci Technol, 4(1):4-14, Jan 2010
- C. Perez-Gandia, A. Facchinetti, G. Sparacino, C. Cobelli, E. J. Gomez, M. Rigla, A. de Leiva, and M. E. Hernando. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther., 12(1):81-88, Jan 2010
- A. Facchinetti, G. Sparacino, and C. Cobelli. An online self-tunable method to denoise CGM sensor data. IEEE Trans Biomed Eng, 57(3):634-641, Mar 2010
- A. Facchinetti, G. Sparacino, and C. Cobelli. Enhanced accuracy of continuous glucose monitoring by online extended kalman filtering. Diabetes Technol. Ther., 12(5):353-363, May 2010
- G. Sparacino, A. Facchinetti, and C. Cobelli. Smart continuous glucose monitoring sensors: on-line signal processing issues. Sensors (Basel), 10(7):6751-6772, 2010
- B. Kovatchev, C. Cobelli, E. Renard, S. Anderson, M. Breton, S. Patek, W. Clarke, D. Bruttomesso, A. Maran, S. Costa, A. Avogaro, C. Dalla Man, A. Facchinetti, L. Magni, G. De Nicolao, J. Place, and A. Farret. Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J Diabetes Sci Technol, 4(6):1374-1381, Nov 2010
2011
-
A. Facchinetti, G. Sparacino, E. Trifoglio, and C. Cobelli. A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms. Diabetes Technol. Ther., 13(2):111-119, Feb 2011
- S. Guerra, G. Sparacino, A. Facchinetti, M. Schiavon, C. D. Man, and C. Cobelli. A dynamic risk measure from continuous glucose monitoring data. Diabetes Technol. Ther., 13(8):843- 852, Aug 2011
- S. Sivananthan, V. Naumova, C. D. Man, A. Facchinetti, E. Renard, C. Cobelli, and S. V. Pereverzyev. Assessment of blood glucose predictors: the prediction-error grid analysis. Diabetes Technol. Ther., 13(8):787-796, Aug 2011
- A. Facchinetti, G. Sparacino, and C. Cobelli. Online denoising method to handle intraindividual variability of signal-to-noise ratio in continuous glucose monitoring. IEEE Trans Biomed Eng, 58(9):2664-2671, Sep 2011
2012
-
M. Falda, S. Toppo, A. Pescarolo, E. Lavezzo, B. Di Camillo, A. Facchinetti, E. Cilia, R. Velasco, and P. Fontana. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics, 13 Suppl 4:S14, 2012
- S. Del Favero, A. Facchinetti, and C. Cobelli. A glucose-specific metric to assess predictors and identify models. IEEE Trans Biomed Eng, 59(5):1281-1290, May 2012
- C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng, 59(6):1550-1560, Jun 2012
- S. Guerra, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli. Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach. IEEE Trans Biomed Eng, 59(6):1658-1669, Jun 2012
- M. Zanon, G. Sparacino, A. Facchinetti, M. Riz, M. S. Talary, R. E. Suri, A. Caduff, and C. Cobelli. Non-invasive continuous glucose monitoring: improved accuracy of point and trend estimates of the Multisensor system. Med Biol Eng Comput, 50(10):1047-1057, Oct 2012
- G. Sparacino, M. Zanon, A. Facchinetti, C. Zecchin, A. Maran, and C. Cobelli. Italian contributions to the development of continuous glucose monitoring sensors for diabetes management. Sensors (Basel), 12(10):13753-13780, 2012
2013
-
C. Zecchin, A. Facchinetti, G. Sparacino, and C. Cobelli. Reduction of number and duration of hypoglycemic events by glucose prediction methods: a proof-of-concept in silico study. Diabetes Technol. Ther., 15(1):66-77, Jan 2013
- A. Facchinetti, S. Del Favero, G. Sparacino, and C. Cobelli. An online failure detection method of the glucose sensor-insulin pump system: improved overnight safety of type-1 diabetic subjects. IEEE Trans Biomed Eng, 60(2):406-416, Feb 2013
- A. Facchinetti, G. Sparacino, S. Guerra, Y. M. Luijf, J. H. DeVries, J. K. Mader, M. Ellmerer, C. Benesch, L. Heinemann, D. Bruttomesso, A. Avogaro, and C. Cobelli. Real-time improvement of continuous glucose monitoring accuracy: the smart sensor concept. Diabetes Care, 36(4):793- 800, Apr 2013
- M. Zanon, G. Sparacino, A. Facchinetti, M. S. Talary, M. Mueller, A. Caduff, and C. Cobelli. Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness. Sensors (Basel), 13(6):7279-7295, 2013
- A. Facchinetti, G. Sparacino, and C. Cobelli. Signal processing algorithms implementing the smart sensor concept to improve continuous glucose monitoring in diabetes. J Diabetes Sci Technol, 7(5):1308-1318, Sep 2013
- C. Zecchin, A. Facchinetti, G. Sparacino, C. Dalla Man, C. Manohar, J. A. Levine, A. Basu, Y. C. Kudva, and C. Cobelli. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol. Ther., 15(10):836-844, Oct 2013
- M. Zanon, G. Sparacino, A. Facchinetti, M. S. Talary, M. Mueller, A. Caduff, and C. Cobelli. Regularised model identification improves accuracy of multisensor systems for noninvasive continuous glucose monitoring in diabetes management. Journal of Applied Mathematics, 2013(Article ID 793869):10 pages, 2013
- A. Garcia, A. L. Rack-Gomer, N. C. Bhavaraju, H. Hampapuram, A. Kamath, T. Peyser, A. Facchinetti, C. Zecchin, G. Sparacino, and C. Cobelli. Dexcom G4AP: an advanced continuous glucose monitor for the artificial pancreas. J Diabetes Sci Technol, 7(6):1436-1445, Nov 2013
2014
-
C. Zecchin, A. Facchinetti, G. Sparacino, and C. Cobelli. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Programs Biomed, 113(1):144-152, Jan 2014
- A. Facchinetti, S. Del Favero, G. Sparacino, J. R. Castle, K. W.Ward, and C. Cobelli. Modeling the glucose sensor error. IEEE Trans Biomed Eng, 61(3):620-629, Mar 2014
- S. Del Favero, A. Facchinetti, G. Sparacino, and C. Cobelli. Improving accuracy and precison of glucose sensor profiles: retrospective fitting by constrained deconvolution. IEEE Trans Biomed Eng, 61(4):1044-53, Apr 2014
- C. Fabris A. Facchinetti, G. Sparacino, M. Zanon, S. Guerra, A. Maran, C. Cobelli. Glucose variability indices in type 1 diabetes: parsimonious set of indices revealed by sparse principal component analysis. Diabetes Technol Ther, 16(10):644-52, Oct 2014
2015
-
S. Del Favero, A. Facchinetti, G. Sparacino, C. Cobelli; AP@home consortium. Retrofitting of continuous glucose monitoring traces allows more accurate assessment of glucose control in outpatient studies. Diabetes Technol Ther, 17(5):355-63, May 2015
- M. Vettoretti, A. Facchinetti, S. Del Favero, G. Sparacino, C. Cobelli. On-line calibration of glucose sensors from the measured current by a time-varying calibration function and Bayesian priors. IEEE Trans Biomed Eng. 2015 Apr 24. [Epub ahead of print]
- C. Fabris, A. Facchinetti, G. Fico, F. Sambo, M.T. Arredondo, C. Cobelli; MOSAIC EU Project Consortium. Parsimonious Description of Glucose Variability in Type 2 Diabetes by Sparse Principal Component Analysis. J Diabetes Sci Technol. 2015 Jul 31. pii: 1932296815596173. [Epub ahead of print]
- A. Facchinetti, S. Del Favero, G. Sparacino, C. Cobelli. Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices. Med Biol Eng Comput, 53(12):1259-69, Dec 2015
Book Chapters
-
C. Zecchin, A. Facchinetti, G. Sparacino, C. Cobelli.
Jump neural network for real-time prediction of glucose concentration.
Methods Mol Biol. 2015;1260:245-59. doi: 10.1007/978-1-4939-2239-0_15.
Patents
-
MI2008A000837 (2008) Metodo e dispositivo per il trattamento di dati di livello glicemico tramite filtraggio auto-adattativo, predizione del livello glicemico futuro e generazione di allarmi Sparacino G., Facchinetti A., Cobelli C.
- PCT/IB2009/051870 (2009) Method and device for processing glycemia level data by means of self-adaptive filtering, predicting the future glycemia level and generating alerts Sparacino G., Facchinetti A., Cobelli C.
- PCT/IB2010/054947 (2010) Method to Recalibrate Continuous Glucose Monitoring Data On-Line Facchinetti A., Guerra S., Sparacino G., De Nicolao G., Cobelli C. Note: optioned by Dexcom Inc. in 2012
- US 13/661,393 (2012) Alert System for Hypo and Hyperglycemia Prevention based on Clinical Risk Guerra S., Facchinetti A., Sparacino G., Schiavon M., Cobelli C. Note: optioned by Dexcom Inc. in 2012, technology transfered to Dexcom Inc. in 2015
- US 61/606,549 (2012) Method to Improve Safety Monitoring in Type-1 Diabetic Patients by Detecting in Real-Time Failures of the Glucose Sensor-Insulin Pump System Facchinetti A., Del Favero S., Sparacino G., Cobelli C. Note: optioned by Dexcom Inc. in 2012, technology transfered to Dexcom Inc. in 2015
- US 61/720,286 (2012) Systems and methods for providing sensitive and specific alarms Kamath A., Rack-Gomer A.L., Bhavaraju N, Hampapuram H., Facchinetti A., Zecchin C., Sparacino G., Cobelli C. Note: developed jointly with Dexcom Inc. and assigned to Dexcom Inc. in 2013
- PCT/IB2014/059121 (2013) Retrospective retrofitting method to generate a continuous glucose concentration profile by exploiting continuous glucose monitoring sensor data and blood glucose S. Del Favero, A. Facchinetti, G. Sapracino, C. Cobelli Note: optioned by Dexcom Inc. in 2014, technology transfered to Dexcom Inc. in 2014
- Algorithms to improve the accuracy of continuous glucose monitoring sensors through short-term prediction B.P. Kovatchev, A. Facchinetti, G. Sapracino, C. Cobelli
- US 62/163,091 (2015) Individualized multiple-day simulation model of type-1 diabetic patient decision-making for developing, testing and optimizing insulin therapies driven by glucose sensors M. Vettoretti, A. Facchinetti, G. Sapracino, C. Cobelli Note: optioned by Dexcom Inc. in 2015
Abstracts/Proceedings
-
More than 70 contributions to international conferences
-
More than 10 contributions to national conferences